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ABSTRACT 
We propose an efficient frequency-domain full waveform inversion (FWI) method using plane-
wave encoded shot records. The forward modeling involves application of position dependent 
linear time shifts at all source locations. This is followed by propagation of wavefields into the 
medium from all shot points simultaneously. The gradient of the cost function needed in the 
FWI, is calculated first by transforming the densely sampled seismic data into frequency-ray 
parameter domain and then back-propagating the residual wavefield using an adjoint-state 
approach. We use a Gauss-Newton framework for model updating. The approximate Hessian 
matrix is formed with a plane-wave encoding strategy, which requires a summation over source 
and receiver ray parameters of the Green’s functions. Plane-wave encoding considerably reduces 
the computational burden and cross-talk artifacts are effectively suppressed by stacking over 
different ray parameters. It also has the advantage of directional illumination of the selected 
targets. Numerical examples show the accuracy and efficiency of our method. 

 
INTRODUCTION 
 

During the past several decades, full waveform inversion (FWI) has become increasingly 
popular for velocity analysis in seismic exploration applications (e.g., Tarantola, 1984; Pratt et 
al., 1998; Pratt, 1999; Shin and Cha, 2008). This is because FWI utilizes both amplitude and 
travel time information from band-limited seismic wavefields. The forward problem is solved by 
the two-way wave equation, which can model full wave propagation effects including internal 
multiples. The FWI overcomes several limitations of some of the common imaging techniques 
such as those based on ray theory and one-way wave equation and can provide high-resolution 
estimates of the medium parameters.  

Mathematically, FWI can be formulated as a nonlinear optimization problem that iteratively 
minimizes a misfit functional between observed seismic data and synthetic data. The 
optimization for FWI is under a gradient-type inversion framework. In the frequency domain, the 
misfit is a summation of residuals over all sources, receivers and frequencies. Thus, although 
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gradient-based methods generally provide fast convergence with a good starting model, they are 
still computationally expensive mainly because a large number of sources need to be simulated at 
each iteration. Modern acquisitions with high-fold, short source and receiver interval and wide 
azimuthal coverage make the size of the dataset very large and therefore, the cost of computation 
is increased significantly. 

The simultaneous source encoding approach has been proposed to reduce the computational 
burden for the shot profile simulations required for time-domain prestack depth migration and 
FWI (Romero et al., 2000; Capdeville et al., 2005; Krebs et al., 2009; Boonyasiriwat et al., 2009; 
Guitton and Díaz, 2011).  This approach is also implemented in the frequency-domain FWI 
(Herrmann et al., 2009; Ben-Hadj-Ali et al., 2011). The key step of this approach is forming 
super-shots by summing densely distributed individual shots. In the frequency domain, a random 
phase delay is applied to each of the shot records before summation. This, however, results in 
strong incoherent cross-talk artifacts. The artifacts can be suppressed with stacking the super-
shots. However, the performance of this suppression is dependent on the choice of the random 
shots. This approach is also more sensitive to random noise than conventional FWI method, with 
the degree of sensitivity dependent on the number of shots assembled (Ben-Hadj-Ali et al., 2011). 
This method also cannot effectively deal with coherent noise, which can be improved with a 
structure oriented smoothing operator (Ma and Hale, 2012). The noise in the data can also be 
mitigated by using the array information with a double beamforming approach (Brossier and 
Roux, 2011).   

An alternative approach to reduce the computational cost is to decompose the densely 
acquired data into plane-wave domain and to select a limited number of ray parameters for 
modeling and inversion (Whitmore, 1995; Zhang et al., 2005; Liu et al., 2006; Stoffa et al., 2006). 
In this approach, a linear phase delay is applied to each shot record to form the super-shot. The 
process of transforming the raw data into plane-wave gather is also known as slant-stacking since 
it sums amplitudes along a line of constant slope in the time-space domain (e.g., Stoffa 1989). 
Cross-talk artifacts are suppressed reasonably well with a sufficient number of ray parameters. 
The ray parameter is directly related to the take-off angle at the surface location and it can be 
selected based on an illumination analysis of the targets to be imaged, resulting in further saving 
of computational time. Plane-wave transformation also has the advantage of easily incorporating 
anisotropic analysis into the imaging process (Sen and Mukherjee 2003; Sil and Sen, 2009). 
Better imaging results can be obtained with split-spread receiver gathers, which are generated by 
the reciprocity principle (Liu et al., 2004).  

Vigh and Starr (2008) applied a time-domain plane-wave FWI with applications to synthetic 
data sets and a real 3D marine data. Compared with the standard FWI, computational time is 
reduced significantly with comparable quality of the inverted velocity model. When seismic data 
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do not have sufficient spatial sampling and aperture, plane-wave transform can introduce 
artifacts in the data space. However, modern seismic acquisitions typically satisfy this 
requirement and plane-wave approaches can have a wide range of applications. Zhang and Wang 
(2009) proposed a different propagation scheme with a time-domain wave-equation approach 
applied to a similar plane-wave dataset. This approach has similar computation cost per iteration 
as the approach proposed by Vigh and Starr (2008).  

In this paper, we focus on the frequency domain methods and investigate some practical 
issues. A frequency-domain implementation of FWI remains an attractive approach since the 
coefficients of the allocated matrix can remain the same for different shots. This domain also 
favors a natural choice of different groups of frequencies to avoid cycle skipping and to obtain 
multi-scale solutions (Virieux and Operto, 2009).  

Preconditioning FWI with the Hessian matrix can provide considerable improvement of 
convergence by scaling the perturbed model (e.g., Pratt et al., 1998). Inversion with the use of 
the Hessian matrix is known as a Gauss-Newton optimization procedure, which generally takes 
fewer iterations to attain quadratic convergence than pure gradient methods. Constructing the full 
Hessian matrix is prohibitively expensive for very large models. An approximate Hessian is 
normally used for practical applications (Shin et al., 2001). Further reduction in the 
computational cost can be attained by using the diagonal part of the Hessian only. However, 
even the diagonal Hessian requires Ns Nr+  forward modeling steps, with  equals the number 
of shots and Nr  equals the number of receivers. A phase encoding scheme (Tang, 2009; Tang 
and Lee, 2010) has been proposed to save computational time and disk storage for Hessian 
calculation. Another alternative to Gauss-Newton procedure is to use a quasi-Newton approach, 
which does not compute the Hessian matrix explicitly, but instead iteratively update it (Nocedal, 
1980; Guitton and Díaz, 2011; Ma and Hale, 2011).  

Ns

To improve on the efficiency and accuracy of this full-wave inverse problem, we propose 
performing FWI with frequency domain plane-wave data. With limited selected ray parameters 
of plane-wave data, computation time is saved both in forward modeling and back-propagation 
of residuals for gradient calculation. This approach simplifies the inversion procedure with an 
effective suppression of cross-talk artifacts. The space-domain Hessian is formed using a plane-
wave phase encoding approach, allowing efficient calculation with comparable results as those 
obtained with the standard method. Unlike random phase-encoding approach, this method is not 
sensitive to random noise. This approach can also be easily applied to marine geometry, which 
requires special treatment with a random phase encoding method (Krebs et al., 2009).  

This paper is organized as follows. I first review the conventional FWI approach and 
introduce our plane-wave encoding scheme for gradient and Hessian calculations. Next, I show 
some numerical examples to demonstrate the validity and efficiency of this method. 
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METHODOLOGY 
 

Three primary steps comprise our method. The first involves slant stacking and temporal 
Fourier transform, which provides a frequency-domain plane-wave gather from recorded seismic 
data. This step uses data from different sources and compresses them into a regularized super-
shot. Second, the synthetic data are simulated with a distance dependent linear time shift at all 
receiver locations. This delay is determined by the ray parameter in consideration, which can be 
determined by the take-off angle at the surface location. Similar approach is adopted for back 
propagation of the residuals. Third, the diagonal Hessian is formed with a plane-wave encoding 
approach. These are then used in model update in which the optimal step length is determined by 
a line search. The above process is repeated for multiple groups of frequencies until convergence 
is reached. 

 
Frequency-domain plane-wave data 
 

For a recorded time-domain shot gather, frequency-domain plane-wave data is obtained first 
through a plane-wave transformation, also known as p−τ  transform (e.g., Stoffa 1989; Foster 
and Mosher, 1992).  This transform can be implemented either in the time-domain or in the 
frequency-domain. In the frequency-domain, it involves a phase shift to each trace that is 
dependent on the offset and ray-parameter. This is followed by a stacking operator as follows 

( | , ) ( | , ) exp( ( ))u u iω ω ω= d−∫s s sp x x x p x x x% � ,                               (1) 

where ( | , )u sx x ω is the frequency-domain recorded data at position x for frequency ω  and shot 
, is the transformed plane-wave gather. The vectors p and are used to include 3D 

scenarios. The multiplication  is then an inner product. For 2D cases, p and  are 
scalars. 

sx (u% | , )ωsp x x
( )−p x x� s

p−

x

Note that in the time-domain, this transform needs to be modified by applying a time-shift to 
transform the data from τ  domain to “physical” time-ray parameter ( ) domain to match 
the modeling strategy discussed next (Whitmore, 1995). Also, application of the reciprocity 
principle can produce a split-spread receiver gather, which helps to overcome the aliasing 
problem in plane-wave composition (Liu et al., 2006).  

t p−

4 
 



Fracture parameter estimation 

In a conventional frequency-domain FWI framework, the forward modeling step is a 
simulation of the wavefield propagated from a surface location . For a constant density 
acoustic medium, is governed by the following equation  

sx

2
2

2( , ) ( , ) ( ) ( )
( )

u u f
v
ωω ω ω δ∇ + = − sx x x

x
x ,                                         (2) 

where ( , )u x ω represents the scalar pressure wavefield in the frequency domain,  is the 
acoustic velocity, and 

( )v x
( )f ω  is the frequency domain source signature.  

After discretizing the model with a finite difference or finite element scheme, equation 2 can 
be rewritten in a matrix form as follows (e.g., Marfurt 1984) 

( , ) ( , ) ( ) ( )u f= − sA x x x xω ω ω δ

( , )A x

,                                           (3) 

where ω  is the complex impedance matrix. This matrix is typically sparse and symmetric, 
though it can be non-symmetric for many boundary conditions (Hustedt et al., 2004). Because of 
the pattern of the matrix, equation 3 can be solved  with a scientific linear solver package such as 
the Multifrontal massively parallel solver (MUMPS) (Amestory et al., 2006, Operto et al., 2007) 
and Portable Extendable Toolkit for Scientific Computation (PETSc) (Balay et al., 2001). We 
adopt the direct solver approach with MUMPS to speed up the computation.  

The modeled plane-wave gather is obtained with a linear source, which is obtained by using 
all the sources simultaneously each with a phase shift along the surface seismic line (Whitmore, 
1995). Correspondingly, the forward problem can be formulated as 

( , ) ( , , ) ( , , , ) ( ) ( )u f= −∑    
s

s s
x

A x x p x x p x xω ω ϕ ω ω δ

(

,                 (4) 

with the ith component of , , , )ϕ ωsx x p  is given by 

( )exp (         0 i p x x pω⎧

( )
0

max

( , , , )
exp ( )    0

i i

i

i i

i s i

i s i

i s i

x x p
i p x x p

ϕ ω
ω

− ≥⎪= ⎨
− <⎪⎩

0i

,                       (5) 

where  x  and maxi
x   are the ith component of the start and end receiver locations, respectively.  

Mathematically, equation 4 is the same as the time-domain approach. However, a frequency-
domain implementation does not need temporal interpolation and has the flexibility to include 
frequency scaling and phase rotation, which is useful when the source wavelet is not well 
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estimated at first and when frequency-dependent processing is needed to obtain optimal results 
(Whitmore, 1995). 

Gauss-Newton inversion strategy  

Like other inverse problems, FWI is formulated as an optimization problem searching for the 
minimum of a suitably defined misfit functional that measures the difference between the 
observed and calculated data. A regularization term is necessary to make the inversion better 
posed (Menke, 1984). In the least-square sense, where L-2 norm is used for the misfit functional, 
this problem is stated as 

  such that min ( )E m
m

( ) 0F =m ，                                  (6) 

with  

( ) ( *1( )
2

TT
d prior m priorE ⎡ ⎤= Δ Δ + − −⎢ ⎥⎣ ⎦∑∑∑ *

x x
m d W d m m W m m

ω

λ )
s r

obs cal

,                  (7) 

and 

Δ = −d d d ,                                          (8) 

where m  is the model,  is data residual between the observe data  and calculated data 
, and  are the transpose and complex conjugate of the data residual, respectively;  

and  are the inverses of the data and model covariance matrices, respectively; is the 
prior information about the model known from travel time tomography, for example; 

Δd obsd

cald TΔd

m

*Δd dW
W priorm

λ is a 
damping factor to weigh the data space and model space errors.  

The above nonlinear problem is linearized by expanding the misfit function in a generalized 
Taylor’s series about a reference model m . Assuming that the Hessian (second partial 
derivative of the data with respect to model parameters) can be constructed easily and ignore the 
model gradient, the model perturbation can be obtained by the following Gauss-Newton 
framework formula (Pratt et al., 1998) 

0

( )       = Re Rem dλ

12
1

2

11 *

m

T

E Eλ
−

−

−−

⎛ ⎞⎛ ⎞∂ ∂
Δ = − +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

⎡ ⎤− + Δ⎣ ⎦W H I J W d

m I W
m m ,                                                      (9) 
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where  is the Fréchet derivative of the data with respect to model parameters, H  is the Hessian 
matrix and , is the identity matrix (  means the real part), and  acts as a 
smoothing operator with a correct regularization approach (Virieux and Operto, 2009). 

J
*T

d=H J W J I Re 1
m
−W

Under Born approximation, the gradient is obtained by taking the partial derivative of the 
perturbed model with respect to the perturbed misfit functional. It can be explicitly expressed as 
(Sirgue and Pratt, 2004, Tromp et al., 2005) 

2
*

3

2 ( )( ) Re ( , , ) ( , , ) ( , ) ( , , )
( ) d

E fg G G W
vω

ω ω dω ω ω
⎧ ⎫∂ −

= = Δ⎨ ⎬∂ ⎩ ⎭
∑∑∑ s r r r s

x x
x x x x x x x

m x
s r

x x , (10) 

where  ( , , )G sx x ω  is the Green’s function at the space location x with a source term at , 
is the velocity, and 

sx
( )v x ( , )dW rx x *( , , )dΔ r sx x ω are the elements of the matrix  and dW *Δd , 

 is the weighted data residual and ‘*’ is complex conjugation. *ddΔW
Efficient calculation of the gradient is based on the well-known adjoint state approach, where 

the forward-propagated source wavefield is crosscorrelated with the back-propagated data 
residual. In practice, the source wavefield is usually simulated for every source location and the 
back-propagated residual wavefield is usually simulated simultaneously for all the receiver 
locations. Under such a framework, the gradient can be written as (e.g., Plessix and Mulder, 
2004) 

  
2

*2 ( )( ) Re ( , , ) ( , , )E fg Sω ω
3 ( )

R
vω

ω ω
⎧ ⎫∂ −

= = Δ⎨ ⎬∑∑x x x
∂ ⎩ ⎭s

s s
x

x x
m x

,                    (11) 

where ( , , )S sx x ω  is the forward simulated source wavefield at a particular shot location and 
( , , )RΔ sx x ω  is the reverse-time propagated data residual for all the receiver locations. The 

gradient can be expressed as the crosscorrelation between the forward simulated wavefield and 
back propagated data residual at the zero lag time.  

The full Hessian matrix is never formed explicitly for practical implementations because of 
the prohibitive computation cost. Instead, the second-order term, which accounts for multiple 
scattering effects, is often neglected. The first-order term (approximate Hessian), which is due to 
single scattering, can be explicitly written as (Plessix and Mulder 2004; Tang, 2009) 

24
* *4 ( )fω ω

3 3( , ) Re ( , , ) ( , , ) ( , , ) ( , , )
( ) ( )i j i j i j

i j

H G G G G
v vα

ω

ω ω ω ω= ⎨ ⎬
⎪ ⎪⎩ ⎭

∑∑∑
s r

s s r r
x x

x x x x x x x x x x
x x

⎧ ⎫⎪ ⎪ ,(12) 
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where is the approximate Hessian. The rows of the Hessian can be interpreted as 
source and receiver illumination energy. Preconditioning the gradient with the approximate 
Hessian can remove the geometrical amplitude decay of the Green’s functions. Therefore, it can 
scale the deep perturbations constrained by far-offset data and shallow perturbations constrained 
by near-offset data (Pratt et al., 1998). The diagonal part of the Hessian can be interpreted as the 
resolution of individual model parameters. The off-diagonal part of the Hessian can be viewed as 
the trade-off between different parameters. Large off-diagonal elements indicate large 
uncertainties for parameter estimation since the misfit functional can remain unchanged when 
changes of some parameters are compensated with changes of other parameters.  

( , )i jH x xα

Computing this Hessian is still expensive for present real data applications since it requires 
 forward simulations to obtain the source-side and receiver-side Green’s functions, with 

 and  representing the number of shots and number of receivers, respectively. To further 
reduce the computational burden, the diagonal part of the Hessian (

Ns Nr×
Ns Nr

i j=x x ) can be used. It is 
given by 

24
2

0 6

4 ( )
( ) Re ( , , ) ( , , )

( )
f

H G
vω

ω ω
ω 2G ω

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

∑∑∑
s r

s r
x x

x x x
x

x x ,             (13) 

where is used to represent the diagonal Hessian, the L-2 norm of the complex scalar vector 0 ( )H x
2 *f f=( ) ( ) ( )fω ω ω , the same relation holds for ( , , )G sx x ω  and ( , , )G rx x ω . The diagonal 

Hessian is the autocorrelation of the partial derivative of the source-side and receiver-side 
Green’s functions. This can still provide a good approximation to scale the gradient when the 
off-diagonal elements are relatively small. The computation cost of the diagonal Hessian requires 

 forward simulations, which is equivalent to the calculation of the gradient, which 
requires forward simulations.     
Ns Nr+

2Ns

Plane-wave encoding strategy 

The computational cost of FWI can be reduced significantly by incorporating the plane-wave 
forward modeling strategy because of reduction in the number of wavefield simulations. The 
source wavefield, back-propagated residual wavefield and the source and receiver Green’s 
functions are calculated using equations 4 and 5. After numerical simulations, plane-wave 
encoded gradient can be written as 

22ω ω *
3( ) Re ( ) ( , , ) ( , , )
( )

g f S R
vω

ω ω ω
⎧ ⎫−⎪ ⎪= Δ⎨ ⎬
⎪ ⎪⎩ ⎭

∑∑
s

s s
p

x x p x p
x

% %% .                 (14) 
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where  is the source ray parameter. It corresponds to the take-off angle of the receiver gather. 
Equation 14 is equivalent to shot-profile gradient (Appendix A). However, the summation in 
plane-wave gradient is over ray parameters instead of shot locations, which can considerably 
reduce the number of simulations when a large number of sources are simulated in a 
conventional FWI.  

sp

Similar to the gradient calculation, the diagonal Hessian can also exploit a plane-wave phase 
encoding strategy to reduce computational burden. Using an algorithm similar to wave-equation 
shot-profile migration, we can obtain the receiver-side phase-encoded Hessian as follows 

24
22

0 6

4 ( )
( ) Re ( , , ) ( , , )

( )
f

H G
vω

ω ω ω
ω G ω

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

∑∑∑
s r

s r
x p

x x x
x

%% x p .        (15) 

We further consider a simultaneous encoding of source and receiver-side Green’s functions 
with plane-wave simulations. This computing process can be easily implemented. It requires 
only two forward wavefield simulations: one for source plane-wave wavefiled and the other for 
receiver plane-wave wavefield. Mathematically, it can be written as   

24
2

0 6

4 ( )
( ) Re ( , , ) ( , , )

f
H G

ω ω ω
ω

2

( )
G

vω

ω
⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭s rp p

x p
x∑∑∑ s rx x p% % %% .                   (16) 

Details of the derivation of equations 15 and equation 16 are given in Appendix B and 
Appendix C respectively. Equations 13, 15 and 16 have similar forms, but they differ from each 
other in the propagation scheme and in the number of forward simulations required. Assuming 
that a survey has Ns  shots and  receivers, for one step in line search, direct computation of 
the diagonal Hessian requires Ns  simulations while simultaneous plane-wave encoding 
requires 

Nr
+ Nr

s rNp Np+  simulations. Unlike random phase encoding approach, where the number of 
simulations varies for marine geometry and for land-acquisition or Ocean Bottom Seismometer 
(OBS) geometry, plane-wave encoding approach just needs a similar number of ray parameters. 
The number of ray-parameters can be determined by the imaging targets and by the maximum 
dips present in the shot and receiver gathers.      

Any kind of inversion approach in a Gauss-Newton framework can be applied for 
optimization. For simplicity, we use a steepest decent approach to update the velocity model. 
This method exploits a parabolic or cubic search algorithm with a modification of the fixed 
length model perturbation of equation 9. The model update can be written as    

( )1

1 1
1 0 1( ) ( ) ( ) ( )

kk k k m kH g
−

− −
− −= + +m x m x x I W xα λ .                        (17) 
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where kα  is a scalar for the th iteration. It is defined by line searching along the preconditioned 
gradient direction. In this paper, we use a parabolic fitting scheme for line search.  

k

A multi-scale solution is obtained through the inversion of discrete frequencies. Groups of 
frequencies are selected and two successive loops are formed. The first loop is over a group of 
frequencies, and the second loop is over the frequencies of the frequency group (Brossier et al., 
2009). Inverted model of the previous frequency loop is used as the starting model for the new 
loop. The stopping criterion for each iteration is given by  

( , ) ( , )
( , )

obs cal

cal

−
=

d x d x
d x
ω ω

ε
ω

 .                                     (18) 

A large ε  value means we can stop when the error is large, therefore we can save 
computational time. On the other hand, a small ε  value means a more accurate data fitting is 
required. In this paper, we use 0.001=ε  and this value is fixed for all iterations and for each 
frequency group.  

NUMERICAL EXAMPLES    

a) 

 

b) 

 

Figure 1. A 2-D profile of the Overthrust model.  (a) P-wave velocity of the true model. (b) Initial 
model used to generate the gradient and for inversion in this paper.  

In this section, we will demonstrate the numerical applications of our approach with synthetic 

examples. The synthetic examples are based on a 2D profile of the SEG/EAGE Overthrust model 
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(Figure 1). Analysis of effects of different ray parameters on the gradient is presented to 

demonstrate the dip-selective advantage of our method. In other words, the gradient calculation 

can be benefited from plane-wave decomposition by focusing the image on selected targets. 

Calculation of the Hessian with plane-wave encoding is more powerful since only approximated 

Hessian with a few ray parameters are necessary to ensure the illumination compensation of the 

gradient. We analyze the effectiveness of the encoding schemes with selective ray parameters. 

We finally show the inversion results from our examples with different strategies on the selection 

of the ray parameters.  

Dip-selective gradient  

The P-wave velocities of the true model and initial model  (a smoothed version of the true 
model) are shown in Figure 1. This model has 187×801 grids with 25m of horizontal and vertical 
grid intervals. While a 2-D example is presented for simplicity, extension of all the following 
analysis to a bigger model and to 3-D is trivial. Similar to Ben-Hadj-Ali et al. (2011) we use 
seven different frequencies ranging from 3 Hz to 20 Hz. The range of ray parameters can be 
defined by the imaging targets and the maximum dip of the recorded data. The range for the ray 
parameters used in this paper is[ . 0.4 s/km, 0.4 s/km]−

 

a) b) 

Figure 2. Monochromatic frequency domain (f=20 Hz) seismic data (a) in the source-receiver domain. 
(b) ray parameter-receiver domain. 

The data for a single frequency component with shot-domain modeling and plane-wave 
domain are shown in Figure 2. The sparsity in the shot-domain does not exist in the plane-wave 
domain. The effect of a single ray parameter to the gradient is shown in Figure 3. The gradient 
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shown here is the first iteration with the initial model in Figure 1b. Though a sequential 
calculation for each frequency or each frequency band is typically required for the inversion 
process, the gradient is summed over all the frequencies for a better display. Each ray parameter 
is related to the take-off angle at the surface location, it contributes to the gradient with 
directional illumination. More energy is focused on the left side of the model for a negative ray 
parameter (Figure 3b) and more illumination on the right side of the model for a positive ray 
parameter (Figure 3d). A zero ray parameter (Figure 3c) tends to provide balanced illumination 
on both sides of the model. For reference, the gradient with 81 ray parameters is shown in Figure 
3a. 

 

a) b) 

c) d) 

Figure 3. Plane-wave gradient at the first iteration with different choice of parameters. (a) 81 source 
and receiver ray parameters; (b) single source ray parameter 0.3 s/kmsp = − ; (c) ; 

(d) . 
0  s/kmsp =

0.3 s/kmsp =

Figure 4 shows how the number of ray parameters affects the gradient calculation. For only 
zero ray parameter (zero offset section), there are plenty of artifacts that are generated by the 
footprints of plane-wave encoding (Figure 4a). For 9 ray parameters (Figure 4b), the artifacts 
reduce substantially. For 41 ray parameters (Figure 4c), the artifacts become unnoticeable 
compared with 81 ray parameters (Figure 4d). This provides a qualitative way to define the 
number of ray-parameters to be used in the inversion. For this problem, we assess that 41 ray 
parameters are adequate for inversion, provided that the 41 ray parameters are enough for 
Hessian calculation. Another quantitative requirement of the number of ray parameters can be 
written as (Zhang et al., 2005) 
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max max min(sin sin )
p

LfN
v
−

≥
α α ,                                     (19) 

where  is the number of ray parameters. L is the distance of the receiver gather, pN maxf  is the 
maximum frequency for inversion, minα  and maxα  are the minimum and maximum take-off angle, 
respectively,  is the velocity at the surface location.         v

 

a) b) 

 

c) d) 

Figure 4. The effect of the ranges of ray parameters on the plane-wave gradient. (a) 1 source ray 
parameter ( ); (b) 9 source ray parameters equally distributed from to 

; (c) 41 source ray parameters; (d) 81 source ray parameters. 
0 s/kmsp = 0.4 s/km−

0.4 s/km

Plane-wave encoded Hessian  

To test the effect of directional illumination for the source and receiver plane-wave encoded 
Hessian, we first apply this strategy to a medium with a constant velocity gradient. The 
background velocity is described by v(z) = 2000+ 0.4z. The diagonal Hessian for a single 
frequency at 3 Hz is shown in Figure 5. In addition, the Hessian for the true Overthrust model is 
shown in Figure 6. Unlike the gradient calculation where only a single ray parameter is used, the 
Hessian is calculated with 1 source ray parameter and all receiver ray parameters. Similar to the 
gradient, single ray parameter contributes to directional illumination of the model. This 
decomposition process can be used for directional choice of the ray parameters for the inversion. 
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a) b) 

 

c) d) 

Figure 5. Diagonal Hessian for a constant velocity gradient model with different selection of 
parameters. (a) 101 source and receiver ray parameters; (b) single source ray 
parameter  and 101 receiver ray parameters; (c)0.3 s/kmsp = − 0  s/kmsp = ; (d) . 0.3 s/kmsp =

 

a) b) 

 

d) c) 

Figure 6. Diagonal Hessian for the true model with different selection of parameters. (a) 81 source 
and receiver ray parameters; (b) single source ray parameter 0.3 s/kmsp = −  and 81 receiver ray 

parameters; (c) ; (d)0  s/kmsp = 0.3 s/kmsp = . 
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a) b) 

 

c) d) 

Figure 7. Comparison of the diagonal Hessian for the true model with different parameters. (a) true 
Hessian with 401 sources and 401 receivers; (b) plane-wave Hessian with 9 source and receiver 
ray parameters; (c) plane-wave Hessian with 41 source and receiver ray parameters; (d) plane-
wave Hessian with 81 source and receiver ray parameters. 

Plane-wave encoding provides a good approximation of the Hessian. For the plane-wave 9 
source and receiver ray parameters (Figure7b), this approximation has notable artifacts. For 
41source and receiver ray parameters, theses artifacts are very small (Figure7c). 81 source and 
receiver ray parameters (Figure 7d) produce visually identical results as the true Hessian 
calculated with 401 sources and 401 receivers (Figure 7a). This also confirms that 41 ray 
parameters may be enough for this problem. Note that if the off-diagonal parts of the Hessian are 
needed for the accuracy requirement in a Gauss-Newton framework, plane-wave encoding is 
more appealing because significant amount of computational time can be saved.  

Inversion of the Overthrust model  

We employ a sequential inversion approach for each frequency component. Inverted result 
from the previous step is used as the starting model for the next step and so on. Figure 8b shows 
the inverted model with 9 source and receiver ray parameters. The gradient only requires 
decomposing the receiver gather into source ray parameters. The receiver ray parameters are 
used for Hessian calculation. For each iteration, only 9 wavefield simulations are needed for the 
gradient and also 9 simulations for the Hessian when the reciprocity is considered. From the 
inverted result, we can see that with only 9 ray parameters, promising result can be obtained. 
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However, it still has some errors (more on the shallow part) because the gradient is not 
preconditioned very well. With 41 ray parameters (Figure 8c), the inverted result is almost 
comparable with the result using 401 sources and 401 receivers (Figure 8a). Ben-Hadj-Ali et al. 
(2011) used 199 sources and 200 receivers and showed similar results as Figure 8a. 

 

a) 

 

b) 

 

c) 

Figure 8. Inverted P-wave velocity model with (a) shot domain approach with 401 sources and 401 
receivers; (b) plane-wave domain with 9 source and receiver ray parameters; (c) plane-wave 
Hessian with 41 source and receiver ray parameters. 

Figure 9 plots the normalized data residuals as a function of the iteration number. For a lower 
frequency, the error converges faster and using more iterations does not reduce the error much. 
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For a higher frequency, since the starting model is already close to the true model, a slow search 
process is shown in this plot. Figure 10 shows the time domain plane-wave gather for 

 and , respectively. This is obtained by an inverse Fourier Transform 
of the frequency domain data. While little structure can be observed from the starting model, the 
inverted model shows features that are similar to those of the true model.   
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Figure 9. Normalized error versus iterations for three different frequencies. 

 

a) 

 

b) 

Figure 10. Time domain plane-wave gather for (a) 0 s/kmsp =  and (b) 0.3 s/kmsp = . Left: true model. 

Middle: initial model. Right: inverted model.   
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CONCLUSIONS 

In this study, we have presented a plane-wave encoding strategy for efficient frequency-
domain full waveform inversion (FWI). This approach employs a simultaneous-shot approach 
for gradient calculation and a source and receiver encoding scheme for Hessian calculation. 
Compared to random phase encoding approach, it does not introduce strong cross-talk artifacts. 
Efficiency of this method is achieved by the use of a limited range of ray parameters for 
wavefield simulations. This encoding is robust with respect to noise. Directional illumination can 
be obtained with the selection of ray parameters, which may result in more savings of the 
computational time. Compared to time domain methods, frequency domain forward modeling 
can model multiple frequencies efficiently. Thus, this approach provides an efficient and robust 
tool for full waveform inversion.  
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APPENDIX A 

Proof of the equivalence of shot-profile and plane-wave gradient 

Incorporating the plane-wave encoding strategy, the forward simulation of the source 
wavefield is the solution to equation 4 and 5. It can be written as 
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where ( , , )S sx x ω  is the source wavefield for the shot location at ( ,0) simulated with the shot-
profile wave equation; 

sx
( , , )S x p% ω  is the source wavefield with the plane-wave simulation.  

Similarly, the back propagated data residual can be expressed as 
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After crosscorrelating the source wavefield and residual receiver wavefield, the gradient, 
with the ray parameter being , can be written as follows  p
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where  and  represent different shot locations for the source wavefiled and residual receiver 
wavefield. 

Note that  

1 2 1 2exp( ( )) ( )
p

i pω δ
ω=−∞

− = −∑ x x x x1∞

.                                        (A-4)                        

Stacking equation A-3 over all ray parameters results in the plane-wave domain gradient  
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Thus, we have proved that  

( ) ( )g g=x% x

max( , , ) exp( ( ))      0i

p

G i pω ω

.                                                             (A-6) 

However, real application of the gradient calculation is to simultaneously back-propagate 
the residual wavefield at all the receiver locations. This will result in some different filtering 
effects between plane-wave encoded gradient and shot-profile gradient. 

 

APPENDIX B 

Proof of the equivalence of shot-profile plane-wave encoded diagonal Hessian 

For writing simplicity, the proof shown below is based on the diagonal Hessian. However, it 
does not involve any modification to extend to the full Hessian matrix.  

Similar to the relationship between the shot-profile and plane-wave extrapolated wavefield 
in the gradient calculation, the Green’s function satisfies 
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The receiver-side plane-wave encoded Hessian is expressed as  
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With 

1 2

*
1 2 1( , , ) ( , , ) ( , , ) exp( ( ))K G G i= − 2∑∑r r r

x x
x p x x x x p x x% ω ω ω ω .     (B-3) 

Integrating the equation B-3 over ray parameters, we get 
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Equation B-5 shows the equivalence of the receiver-side plane-wave encoded Hessian and 
shot-profile Hessian.  

A simultaneous plane-wave encoding uses both source and receiver ray parameters. It can 
be formulated as    
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   With ( , , )K x p%
r r ω  given in equation B-3 and ( , , )K x p%

s s ω  given as follows 
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Thus 
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 Equation B-9 proves the equivalence of the source and receiver plane-wave encoded 
Hessian and shot-profile Hessian.  

 


